首页> 外文OA文献 >Stochastic model for joint wave and wind loads on offshore structures
【2h】

Stochastic model for joint wave and wind loads on offshore structures

机译:海上结构联合波浪和风荷载的随机模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The stochastic wave load environment of offshore structures is of such a complicated nature that any engineering analysis requires extensive simplifications. This concerns both the transformation of the wave field velocities and accelerations to forces on the structure and the probabilistic description of the wave field itself. In this paper the last issue is in focus. The modeling follows the traditional structure of subdividing the time development of the wind driven wave process into sea states within each of which the wave process is modeled as a stationary process. The wave process of each sea state is modeled as an affinity in height and time of a Gaussian process defined by a normalized dimensionless spectrum of Pierson-Moskowitz type. The affinity factors are the socalled significant wave height $H_s$ and the characteristic zero upcrossing time $T_z$. Based on measured data of $(H_s,T_z)$ from the North Sea a well fitting joint distribution of $(H_s,T_z)$ is obtained as a so-called Nataf model. Since the wave field is wind driven, there is a correlation between the time averaged wind velocity pressure $Q$ and the characteristic wave height in the stationary situation. Using the Poisson process model to concentrate on those load events that are of importance for the evaluation of the safety of the structure, that is, events with $Q$ larger than some threshold $q_0$, available information about the wind velocity pressure distributionin high wind situations can be used to formulate a Nataf model for the joint conditional distribution of $(H_s,T_z,Q)$ given that $Q>q_0$. The distribution of the largest wave height during a sea state is of interest for designing the free space between the sea level and the top side. An approximation to this distribution is well known for a Gaussian process and by integration over all sea states given $Q>q_0$, the distribution is obtained that is relevant for the free space design. However, for the forces on the members of the structure also the wave period is essential. Within the linear wave theory (Airy waves) the drag term in the Morison force formula increases by the square of the ratio between the wave height and the wave length, and the mass force term increases proportional to the ratio of the wave height and the square of the period. For a strongly narrow band Gaussian process Longuet-Higgins has derived a joint distribution of the height and the period. However, simulations show that the Pierson-Moskowitz spectrum (or any other standard spectrum for wind driven sea waves of similar bandwidth such as the JONSWAP spectrum) does not provide a sufficiently narrow banded process for the distribution of Longuet-Higgins to make a good fit. Surprisingly it turns out that the random time $L$ between two consecutive 0-upcrossings and the random wave height $H$ observed between the two 0-upcrossings behaves such that $L$ and the ratio $H/L$ are practically uncorrelated and both normally distributed except for clipping the negative tails. This result is of global nature and is therefore very difficult if not impossible to obtain by analytical mathematical reasoning. Keywords: Extreme wind driven sea waves, Local maxima and period properties of Gaussian process, Nataf model for wave and wind data, Offshore structure loads, Sea wave stochastics during wind storm, Wave and wind loads.
机译:海洋结构的随机波浪荷载环境具有如此复杂的性质,以至于任何工程分析都需要大量简化。这既涉及到波场速度的转换以及结构上力的加速度,也涉及到波场本身的概率描述。在本文中,最后一个问题是重点。建模遵循将风波过程的时间发展细分为海态的传统结构,在每个海态中,海浪过程都被建模为固定过程。每个海状态的波动过程都被建模为高斯过程的高度和时间的亲和力,高斯过程由Pierson-Moskowitz类型的归一化无量纲谱定义。亲和力因子是所谓的显着波高$ H_s $和特征零上交时间$ T_z $。基于来自北海的$(H_s,T_z)$的测量数据,获得了一个拟合得好的$(H_s,T_z)$的联合分布,即所谓的纳塔夫模型。由于波场是风驱动的,因此时间平均风速压力$ Q $与静止状态下的特征波高之间存在相关性。使用泊松过程模型集中于那些对于评估结构安全性至关重要的载荷事件,即,$ Q $大于某个阈值$ q_0 $的事件,有关高风速压力分布的可用信息给定$ Q> q_0 $,可以用风情况为$(H_s,T_z,Q)$的联合条件分布公式化Nataf模型。在设计海平面与顶面之间的自由空间时,应注意海态期间最大波高的分布。对于高斯过程,这种分布的近似是众所周知的,并且在给定$ Q> q_0 $的情况下,通过对所有海洋状态的积分,可以得到与自由空间设计有关的分布。但是,对于作用在结构构件上的力,波浪周期也是必不可少的。在线性波理论(艾里波)中,莫里森力公式中的阻力项以波高与波长之比的平方增加,而质量力项则与波高与平方之比成比例增加的时期。对于一个极窄的高斯过程,Longuet-Higgins得到了高度和周期的联合分布。但是,仿真显示,Pierson-Moskowitz光谱(或类似带宽的风驱动海浪的任何其他标准光谱,例如JONSWAP光谱)不能为Longuet-Higgins的分布提供足够窄的带状分布过程,从而无法很好地拟合。令人惊讶地发现,两个连续的0交叠之间的随机时间$ L $和两个0交叠之间观察到的随机波高$ H $表现为$ L $和比率$ H / L $实际上不相关,并且两者都呈正态分布,除了修剪负尾部。该结果具有全局性,因此即使不是不可能通过分析数学推理也很难获得。关键词:极端风力海浪,高斯过程的局部最大值和周期特性,海浪和风数据的纳塔夫模型,近海结构载荷,风暴期间的海浪随机,波浪和风载荷。

著录项

  • 作者

    Ditlevsen, Ove Dalager;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号